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Abstract

This paper describes the results of some initial experiments that explore the problem of anomaly
detection on graphs.
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1 Introduction

Anomaly (novelty) detection attempts to detect anomalous observations from a system. Since
the set of rules characterizing anomalous behavior is unknown, it must be learned from sample
observations.

Consider the case where the system we are studying is all groups of people who are in-
teracting so they can accomplish some set of tasks. We would like to identify collections of
people which are unusual in some way. This is a reasonable first step in the process of try-
ing to identify groups which may be dangerous. It seems unlikely that we can write down a
complete set of rules characterizing anomalous behavior of groups of people, but we can obtain
sample observations. It is quite natural to represent a group of interacting people by a graph.
Therefore the problem of identifying unusual groups of people is an anomaly detection problem
whose inputs are graphs.

We have a unique capability for solving this problem because of our recent discovery (Stein-
wart, Hush, & Scovel, 2005) that allows us to design anomaly detectors having both proven
performance and guaranteed computational efficiency. Our work provides, for the first time,
a performance measure for anomaly detection that can be estimated from data. Furthermore,
we show that anomaly detectors can be designed using standard classification algorithms. In
addition, our formalism allows the anomaly detector to have an arbitrary input space (e.g.,
graphs). In this report we demonstrate the practical utility of our discovery by applying our
methods to an anomaly detection problem where the graphs represent the interactions between
characters in the famous novels Anna Karenina, David Copperfield, The Iliad, Huckleberry
Finn, and Les Misérables.

2 Anomaly Detection Problem Formulation

Anomalies are often described as rare or unusual events. This notion can be represented
mathematically by defining anomalies to be points with low probability density value. In
particular the set of points with density value below a threshold ρ comprise the anomalous

set, while the complement of this set is called the normal set. Our goal is to design a binary
function (an anomaly detector) that assigns the value −1 to points in the anomalous set and
+1 to points in the normal set.

To formalize these notions we first recall the basic concept of density. Density is a (local)
valuation of the relative concentration of two measures. In particular, for two measures Q and
µ on a space X where Q is absolutely continuous with respect to µ (i.e. every µ–negligible set
is a Q–negligible set) the density h of Q with respect to µ is the Radon–Nikodym derivative
h = dQ/dµ. In the anomaly detection problem Q is an (unknown) probability measure that
describes the data and µ is a (known) reference measure. For example when X ⊆ R

d the
reference µ is usually taken to be the Lebesgue measure (i.e., the standard volume). In principle
however the reference measure is chosen by the user in a way that establishes a definition of
anomalies relevant to the application. For example in this paper X is a graph space, and while
a uniform measure on graphs is analogous to the Lebesgue measure on R

d, we will see later
that a uniform measure may not be a good choice for the reference.
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Given a density level ρ > 0, the normal set {h > ρ} is called the ρ-level set. The goal of the
density level detection (DLD) problem is to find an estimate of the ρ-level set of h and therefore
an estimate of the anomalous set (by taking the complement). To find this estimate we use
information given to us by a training set T = (x1, . . . , xn) ∈ Xn that is i.i.d. drawn from Q.
With the help of T a DLD algorithm constructs a function f̂ : X → R for which the set {f̂ > 0}
is an estimate of the ρ-level set {h > ρ}. A standard performance measure that quantifies how
well {f̂ > 0} approximates the set {h > ρ} is (see e.g. (Ben-David & Lindenbaum, 1997))

S(f) := µ
(

{f > 0} M {h > ρ}
)

, (1)

where M denotes the symmetric difference. The goal of the DLD learning problem is to find f̂
such that S(f̂) is close to zero. It is important to note that regardless of how we attempt to
achieve this goal we encounter a problem when attempting to validate our result. Indeed, since
the density h is unknown we cannot compute the function S and therefore the performance
S(f̂) is generally unknown. Furthermore, there appears to be no way to compute a reliable
estimate of S from sample data. Thus it would seem that the only way to rigorously certify the
performance of a solution method is through a deductive analysis that relies on premises that
we hope or believe to be true (e.g. by establishing a bound of the form Pr(S(f̂) > ε) < δ where
ε and δ are small and the bound holds for all distributions that we believe will be encountered
in practice). However the discovery in Steinwart et al. (2005), which we now describe, provides
a resolution to this impasse.

Let µ be a probability measure and define the risk

R(f) :=
1

1 + ρ
Q(f ≤ 0) +

ρ

1 + ρ
µ(f > 0). (2)

Steinwart et al. (2005) show that any function that minimizes R also minimizes S. Furthermore
they prove a very tight relation between R and S for all functions f . This establishes R as a
bona fide risk function for the DLD problem. Therefore R is a legitimate performance measure

for anomaly detection. Consequently our goal of choosing f̂ to (approximately) minimize S can
be revised to choosing f̂ to (approximately) minimize R. This is important because, unlike S,
we can compute a reliable estimate of R from sample data. For example if we collect n1 i.i.d.
samples (x1, . . . , xn1) from Q and we synthesize n−1 i.i.d. samples (x̄1, . . . , x̄n

−1) from µ then
we can compute a reliable estimate of R using

R̂(f) =
1

(1 + ρ)n1

n1
∑

i=1

I(f(xi) ≤ 0) +
ρ

(1 + ρ)n−1

n
−1
∑

i=1

I(f(x̄i) > 0) (3)

where I(·) is the indicator function, i.e. I(θ) = 1 when θ is true and I(θ) = 0 when θ is false.

It turns out that R is also a performance measure for the following (artificial) supervised
classification problem. Let Y := {1,−1} be the label set and let x ∈ X and y ∈ Y denote values
of the random variables x and y. Consider a joint distribution Px,y where the corresponding
conditional distributions are Px|y=1 := Q and Px|y=−1 := µ, and the corresponding class
marginals are P (y = 1) := 1/(1+ρ) and P (y = −1) := ρ/(1+ρ). In the supervised classification
problem we seek a real valued function f that minimizes the average classification error e(f) :=
EPx,y

[I(signf(x) 6= y)]. It is easy to show that R(f) = e(f) and therefore the goal of minimizing
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the risk is identical to minimizing the average classification error. To create a data set for this
(artificial) classification problem we collect n1 i.i.d. samples (x1, . . . , xn1) from Q and assign
each of them the label y = +1, and we synthesize n−1 i.i.d. samples (xn1+1, . . . , xn1+n

−1) from
µ and assign each of them the label y = −1. This gives a data set T = ((x1, y1), ..., (xn, yn))
of size n = n1 + n−1. In the learning problem the goal is to use T to choose a function f̂ so
that the average classification error is as small as possible. The empirical average classification
error, which is equal to the empirical risk in (3), is given by

n
∑

i=1

uiI(f(xi 6= yi)) (4)

where

ui =

{

1
(1+ρ)n1

, yi = 1
ρ

(1+ρ)n
−1

, yi = −1
. (5)

The only difference between this learning problem and the standard supervised classification
learning problem is that the class marginal probabilities are known.

3 Using Empirical Risk Minimization to Design Kernel Ma-

chines for Anomaly Detection

Empirical risk minimization (ERM) is a method that determines a detector f̂ by minimizing
an empirical risk R̂. A natural choice for R̂ is the empirical risk in (3) (or equivalently (4)),
but it is also common to consider other risk functions that are easier to optimize. In this
paper we compare two different ERM methods. The first minimizes (3) over a simple data

dependent hypothesis class called LPC described in Cannon, Howse, Hush, and Scovel (2003)
and the second is the density level detection support vector machine (DLD–SVM) described in
Steinwart et al. (2005). In both cases the detectors f take the form of a kernel machine,

fγ,b(x) =
∑

i

γiK(xi, x) + b

where K : X ×X → R is a kernel function, meaning there exists a Hilbert space H and a map
φ : X → H such that K(x1, x2) = 〈φ(x1), φ(x2) 〉 ∀ x1, x2 ∈ X. In this paper we are interested
in problems where X is the space of graphs and therefore K is a so–called graph kernel.

4 Graph Kernels

Much of the existing work on graph kernels concentrates on the special cases where the graph
is a string, e.g. (Joachims, 2002) and (Lodhi, Shawe-Taylor, Christianini, & Watkins, 2001), or
the graph is a tree, e.g. (Vishwanathan & Smola, 2003). Most of the applications for this work
are centered around various natural language processing tasks, such as text classification and
deducing sentence meaning. Surprisingly little work has been done with more general graphical
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structures. Most of the work to date on general graph kernels is by Gärtner and Kashima, e.g.
see (Gärtner, Flach, & Wrobel, 2003) and (Kashima, Tsuda, & Inokuchi, 2004). In this study
we use the work of Gärtner et al. (2003) because it is both straightforward to implement and
fairly easy to generalize. In Gärtner et al. (2003) kernels are described which compute certain
graph features (i.e., subgraph homomorphism and subgraph isomorphism). The computational
complexity is analyzed for each kernel, and it is shown that computing kernels which represent
some graph features (i.e., subgraph isomorphism) is NP-hard, while computing kernels which
represent other graph features (i.e., subgraph homomorphism) may be more tractable. We now
describe the kernel that we chose from Gärtner et al. (2003) for this work.

A graph is denoted by G = (V, E) where V = {v1, . . . , vn} is a set of n vertices and E ⊆ V×V
is a set of m ≤ n2 edges. The adjacency matrix E is defined by [E]ij = 1 ⇔ (vi, vj) ∈ E and
[E]ij = 0 ⇔ (vi, vj) /∈ E . For a vertex label set {`1, ..., `p} the vertex label matrix L is defined
by [L]ki = 1 ⇔ `k = label(vi) and [L]ki = 0 ⇔ `k 6= label(vi). Clearly E is an n × n square
binary matrix and L is a p × n rectangular binary matrix where p is the number of vertex
labels. The graph kernel that we use computes a weighted sum over walks of length k between
vertices labeled `i and `j for all possible label pairs (`i, `j) and all possible walk lengths k. It
is written formally as

K
(

G1, G2

)

=

〈

L1

(

∞
∑

i=0

ηi E
i
1

)

L
ᵀ
1 ,L2

(

∞
∑

j=0

ηj E
j
2

)

L
ᵀ
2

〉

, (6)

where the matrix inner product is defined by 〈A,B 〉 =
∑

i,j[A]ij [B]ij. At first glance it
may appear that this kernel cannot be evaluated in practice because it contains infinite sums.
However, if the weight sequence η0, η1, . . . is properly chosen, then Equation (6) can be evaluated
in polynomial time. For example, if η0, η1, . . . is a geometric sequence, then ηi = βi and

∞
∑

i=0

βi
E

i =
(

I − βE
)−1

(7)

as long as β < 1/maxG(minG∈G(∆+(G),∆−(G))), where G is our collection of graphs, and
∆+(G) and ∆−(G) are the maximum out-degree and maximum in-degree respectively of the
vertices in a particular graph. The right hand side of Equation (7) requires inverting an
n × n matrix, which can be computed in O(n3) time. Therefore when ηi = βi, the kernel in
Equation (6) can be computed in O(n3 + pn2 + p2 n) time.

5 Experimental Results

We now describe an experiment where X is the space of all simple undirected graphs having
between 2 and 10 vertices with distinct vertex labels. In our example problem, the graphs
drawn from the Q distribution represent the interactions of a group of characters within a
section of a book. Vertices in these graphs correspond to a specific character (person) within a
group and are labeled by the character’s relative rank within the group, and an edge is present
when the two characters interact within the section of the book represented by the graph. A
group of characters consists of characters with consecutive rank (e.g., characters with ranks 2
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through 11), and a section of a book consists of consecutive book chapters (e.g., chapters 16
through 20). Characters are ranked in decreasing order based on their frequency of appearance
throughout the entire book. So the character with rank one is the character that appears
most frequently in the book. Since the vertex label is the character’s relative rank within a
group, the vertex label set is always {1, . . . , 10}. To obtain samples from the distribution Q,
graphs were generated from the following books: Anna Karenina, David Copperfield, The Iliad,
Huckleberry Finn, and Les Misérables.

To generate samples from the reference distribution µ, we first considered the choice of
reference distribution. When X ⊂ R

d it is common to choose the uniform distribution for µ,
but a uniform distribution may be a poor choice for our graph space. Since there are far more
graphs with 10 vertices than graphs with less than 10 vertices, a uniform distribution will be
highly concentrated around graphs with 10 vertices. Thus for any non–uniform distribution Q,
such as the distribution of our book data, it is likely that almost all graphs containing less than
10 vertices will be labeled anomalous. Thus choosing a uniform reference distribution is likely
to produce a very uninformative solution. Therefore, for this study we choose a non-uniform
reference distribution. Our reference data consists of samples from X containing 2 ≤ n ≤ 10
vertices and 1 ≤ m ≤ n(n − 1)/2 edges. The probability of n is uniform on {2, . . . , 10}, and
the probability of m is uniform on {1, . . . , n(n − 1)/2}. The edge locations are determined
by drawing m samples without replacement from the set of

(

n
2

)

possible locations. The vertex
labels are determined by drawing n samples without replacement from the set {1, . . . , 10}. Note
that there are many other ways to generate reference data for this problem.

For our anomaly detection experiments we generated 3170 book graphs from Q and 30,000
random graphs from µ. All of the data and software needed to generate these graphs is in a
package called GraphBase by Knuth (1994). We split this graph data into three disjoint sets:
training T , validation A, and testing S. The set T contains 1600 book graphs and 10,000
reference graphs, and the sets A and S each contain 785 book graphs and 10,000 reference
graphs. We used three different algorithms to design anomaly detectors with this data, the
DLD–SVM, the DLD–LPC and the boosted DLD–LPC 1. We constructed the detector f̂ using
the training set T . Tuning parameters, such as β for the kernel and λ for the SVM, were chosen
to (approximately) minimize the empirical risk in (4) on the validation set A. Note that for
simple undirected graphs containing at most 10 vertices β < 1

9 . Estimates of the generalization
performance (i.e., future performance) were obtained using the testing set S. We estimate
three different performance measures, the total risk in Equation (2), the alarm rate Q(f ≤ 0),
and the volume µ(f > 0).

The estimates of these performance measures for the DLD–SVM, DLD–LPC and boosted
DLD–LPC anomaly detectors are shown in Figure 1. Figure 1(a) plots the estimated total
risk R versus the threshold density level ρ for the three anomaly detectors. Notice that the
SVM significantly outperforms the single LPC, but that the boosted LPC has comparable
performance to the SVM. Also note that the minimum total risk in this plot is about 6%,
which suggests that the conditional distributions Px|y=1 and Px|y=−1 have a fair amount of
overlap. Figure 1(b) plots the alarm rate Q{f ≤ 0} versus the volume µ{f > 0}. Again
notice that the SVM and the boosted LPC have similar performance and the single LPC is

1For the boosted DLD–LPC we used the standard AdaBoost algorithm with base classifiers designed using
the DLD–LPC algorithm.
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Figure 1: Performance measures estimated using the testing set S for the DLD–SVM, DLD–LPC
and boosted DLD–LPC anomaly detectors. (a) The total risk R given by Equation (2)
versus the threshold density level ρ. (b) The alarm rate Q{f ≤ 0} versus the volume
µ{f > 0}.

noticeably worse. This plot is implicitly a function of ρ, with the points in the lower right
corresponding to small values of ρ and those in the upper left corresponding to large ρ. The
curves in Figure 1(b) clearly illustrate the trade-off between alarm rate and volume. Ideally
one would like to operate at a point on these curves which has both a small alarm rate and a
small volume. The point ρ ≈ 1 is near the knee of the curves and therefore appears to give a
reasonable trade-off between small alarm rate and small volume for all three detectors. Note
that ρ ≈ 1 is near the maximum total error for the three curves in Figure 1(a).

Finally we present two examples of book graphs, one was labeled anomalous by the boosted
DLD-LPC detector and the other was labeled non-anomalous. The two graphs are shown in
Figure 2. The graph in Figure 2(a) was labeled anomalous and the one in Figure 2(b) wasPSfrag replacements
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Figure 2: Two examples of book graphs, (a) was labeled as anomalous, and (b) was labeled as
non-anomalous by the boosted DLD–LPC detector.

labeled non-anomalous by the boosted DLD–LPC detector. The graph in Figure 2(a) comes
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from “David Copperfield” chapters 3–8 and characters 5–14, and the one in Figure 2(b) comes
from “Les Misérables” chapters 310–345 and characters 2–11. This characterization of these two
graphs appears reasonable in the following sense. In the non-anomalous graph in Figure 2(b)
most of the connections go from high ranked characters to low ranked characters, and there
is very little interaction between low ranked characters. However, in the anomalous graph in
Figure 2(a) this situation is essentially reversed. Note that the non-anomalous graph has two
distinct components (i.e., it is not fully connected), so apparently the number of components
does not strongly influence whether a graph is labeled as anomalous.

6 Conclusion

We have described a recent discovery that allows us to make quantitative comparisons of differ-
ent anomaly detection solutions using estimates of the total risk in Equation (2). Furthermore
we have applied ERM learning algorithms from supervised classification to design anomaly
detectors. Our formalism allows us to make an explicit choice for the reference measure µ,
which appears to be very important in graph spaces. We have also described solution methods
that perform anomaly detection directly in graph space using the graph kernel in Equation (6).
Our methods solve the density level detection problem directly (in contrast to indirect methods
based on e.g. density estimation techniques which may be more difficult or produce inferior
results). Our methods have both proven performance bounds and guaranteed computational
efficiency. We have demonstrated these methods on a synthetic problem where the graphs
represent the interactions between characters in novels.
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